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Abstract

A numerical study is undertaken comparing a fifth-order version of the weighted essentially non-oscillatory nu-

merical (WENO5) method to a modern piecewise-linear, second-order, version of Godunov�s (PLMDE) method for the

compressible Euler equations. A series of one-dimensional test problems are examined beginning with classical linear

problems and ending with complex shock interactions. The problems considered are: (1) linear advection of a Gaussian

pulse in density, (2) Sod�s shock tube problem, (3) the ‘‘peak’’ shock tube problem, (4) a version of the Shu and Osher

shock entropy wave interaction and (5) the Woodward and Colella interacting shock wave problem. For each problem

and method, run times, density error norms and convergence rates are reported for each method as produced from a

common code test-bed. The linear problem exhibits the advertised convergence rate for both methods as well as the

expected large disparity in overall error levels; WENO5 has the smaller errors and an enormous advantage in overall

efficiency (in accuracy per unit CPU time). For the nonlinear problems with discontinuities, however, we generally see

both first-order self-convergence of error as compared to an exact solution, or when an analytic solution is not

available, a converged solution generated on an extremely fine grid. The overall comparison of error levels shows some

variation from problem to problem. For Sod�s shock tube, PLMDE has nearly half the error, while on the peak

problem the errors are nearly the same. For the interacting blast wave problem the two methods again produce a similar

level of error with a slight edge for the PLMDE. On the other hand, for the Shu–Osher problem, the errors are similar

on the coarser grids, but favors WENO by a factor of nearly 1.5 on the finer grids used. In all cases holding mesh

resolution constant though, PLMDE is less costly in terms of CPU time by approximately a factor of 6. If the CPU cost

is taken as fixed, that is run times are equal for both numerical methods, then PLMDE uniformly produces lower errors

than WENO for the fixed computation cost on the test problems considered here.
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1. Introduction

In recent years, new formally high-order finite difference methods have been developed that are designed
to robustly treat discontinuities by dropping order (upwinding) in the vicinity of a discontinuity while in

smooth regions of the flow maintaining high-order formal order of accuracy. Furthermore, these methods

have a rigorous mathematical formulation that admits precise numerical analysis in special cases. Among

the most recent family of methods are those known as ENO (essentially non-oscillatory) finite difference

methods [11]. A generalization and practical improvement of these very successful schemes is the WENO

(weighted ENO) method [13,16]. In WENO, a convex-weighted combination of candidate differencing

stencils is used to approximate the flux. In this way, the shortcomings of pure ENO methods [21] could be

avoided while preserving high order of accuracy (for linear problems and where the flow is fully resolved),
robustness and efficiency. It is worth noting that WENO (and ENO) methods rely on upwinding and,

hence, a reduction in order at flow discontinuities in much the same way as the formally second-order,

MUSCL methods considered here, which reduce to first order at flow discontinuities. The specific MUSCL

method used for comparison to WENO in this work is a piecewise linear MUSCL method using a direct

Eulerian approach (PLMDE) originally devised by Colella [4,28].

PLMDE and the WENO methods attempt to improve upon first-order results by introducing some

higher-order elements to the schemes. From this perspective, these methods can be termed bottom-up type

higher-order methods. These methods can be contrasted with truly high-order methods, such as spectral
methods. Spectral methods, when applied to problems with discontinuities, include algorithmic elements

that stabilize the solution and mollify the induced Gibbs oscillations. Locally (or globally) there is some

reduction from spectral order of accuracy, so these methods are termed top-down type higher-order

methods. In the present work these schemes are not considered and we focus attention on the bottom-up

methods.

In coupled hyperbolic problems with discontinuities, it was proven by Majda and Osher [17] that nu-

merical methods with modest restrictions are subject to a loss of formal accuracy. The accuracy degenerates

to first order in all but very special cases between characteristics emanating from a discontinuity. Since that
time, other researchers have revisited this issue, but without any evidence to modify Majda and Osher�s
result. Examples are found by Donat and Osher [9], where sub-cell resolution can overcome this problem.

Casper and Carpenter [3] also report similar results.

There have been several papers that have included the comparison of different methods. Most notable

among these is Woodward and Colella�s comparison of methods in 1984 [26]. This includes the introduction

to the interacting shock wave problem considered here and the quantitative analysis of results for that

problem. Among the methods tested in that paper are an early version of PLMDE and PPMDE, but

WENO methods were developed more than a decade after the paper�s publication. The comparison in-
cludes several multi-dimensional problems, but detailed quantitative comparison is not possible due to the

presence of shear and vortical structures in the flows. Zalesak [27] provided a second set of comparisons for

shock capturing methods in 1987 including problems with shocks. Recently, Liska and Wendroff [15] have

compared a broad cross-section of modern methods on a variety of shocked flows. In one dimension, the

comparisons are made quantitatively for problems having analytical solutions. Again, multi-dimensional

problems are not examined quantitatively only qualitatively.

The present work considers a set of one-dimensional test problems of increasing complexity. The idea is

to examine the numerical methods in terms of efficiency and accuracy in the linear regime to establish a
baseline for performance. As most problems of interest in compressible flow are nonlinear, we consider

nonlinear problems that are relatively simple yet still contain interesting structures. The features seen in

these one-dimensional problems are prototypical of many features seen in more complex multi-dimensional

flows. The analysis methods used in the linear case are applied to the nonlinear problems and the results are

measured and compared. In order of increasing complexity the test problems are: (1) linear advection of a
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Gaussian pulse, (2) Sod�s shock tube problem [23], (3) the ‘‘peak’’ shock tube problem [15], (4) a version of

the Shu and Osher shock entropy wave interaction [22] and (5) the Woodward and Colella interacting

shock wave problem [26].
In order to make the comparisons as precise as possible, we calculate normed errors relative to either an

exact solution, in the case of linear advection and shock tube problems, or to a highly resolved solution in

the other nonlinear tests. When comparison is made to an analytic solution, the errors can be computed and

a convergence rate can be derived. This gives the rate at which the computed solution is approaching the

true solution. For problems where we do not have an analytic solution, we use two ways to judge the

computed solutions. The first is to use the highly resolved solution as the ‘‘true’’ solution and proceed as in

the previous case. In this work, we will use an additional numerical method as an independent arbiter for

determining the ‘‘true’’ solution. When the resolutions of the computed solutions approach the resolution
of the highly resolved one, the errors go to zero and the convergence rates become large. So, for this way of

characterizing errors to make sense, the resolutions between the highly resolved ‘‘true’’ solution and the

computed ones must be sufficiently different and the errors in the highly resolved solution to be much

smaller than those of the coarser computed solution. This gives enough room so that anomalously high

convergence rates and low errors are not encountered. Another way to judge computed solutions is to use

self-convergence. With this approach, we compare a computed solution to one on a grid twice as fine. This

method says nothing about the quality of the solution as compared to the ‘‘true’’ one, but does provide

information regarding the internal consistency of the numerical method and its intrinsic convergence
properties.

Examining errors and convergence rates is insufficient for a complete comparison of numerical methods.

The cost in computational time must also be considered (accuracy per unit CPU time). A common software

test-bed has been developed that contains the numerical implementations of the schemes used in this study.

This should help assure the reader that neither method has been given an undue advantage due to im-

plementation optimizations. Similarly, we are assured that both methods are implemented in a comparable

way and that the code has been compiled in exactly the same way. For the problems considered, we report

run times on a single CPU. In real applications, however, single CPU performance is largely ignored in
favor of parallel efficiency and scaling, but for the purposes of this study, this is the appropriate metric. We

note that both methods have similar parallel implementations and data transfer patterns.

Inherently multi-dimensional problems with shock waves do not readily admit analytical solutions, thus

one is left with using grid converged solutions to estimate error. The grid converged solutions used in this

paper employ meshes that are at least 8 times finer than the finest grid examined for error. Attempting to

meet this sort of criterion in two dimensions would correspond to at least 512 times the computational

effort as the finest grid examined for error. In three dimensions the effort grows to 4096. Clearly there is a

huge additional amount of effort that must be expended in order to extend one-dimensional quantitative
comparisons to multiple spatial dimensions.

One-dimensional problems provide a look at a particular method�s performance in an idealized con-

figuration. That is as all embedded discontinuities are grid-aligned in one dimension, numerical dissipation

and contact smearing is minimized. Hence, one-dimensional test problems show a method when at its best.

Increasing the inherent dimensionality of the tests only degrades the schemes performance by increasing the

intrinsic dissipation due to non-grid aligned effects. Furthermore, the computational cost in multiple di-

mensions can be determined by simple dimensional scaling from measured one-dimensional performance as

most modern multi-dimensional numerical methods are constructed from either one-dimensional sweeps or
a composition of one-dimensional operations.

For multi-dimensional shock driven flows that contain embedded unstable features (e.g., Richtmyer–

Meshkov or Kelvin–Helmholtz instability), there are additional issues not mentioned above that make

quantitative analysis and comparisons problematic. There is the real issue of how one measures conver-

gence or even what convergence means for these unstable flows. There is also an additional intimately
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related issue as to what the appropriate set of equations that should be solved are (Euler versus Navier–

Stokes) so that convergence can even be realized.

The paper begins with a brief description of the numerical methods as implemented in the test-bed. We
provide mainly an overview of the key features of the methods implemented and refer the reader to ap-

propriate references for the details. Next, the methods are compared for each of the test problems over a

range of grid resolutions. Finally, we summarize the results and state the conclusions.
2. Computational platform and code optimization

All of the test problems were run on a IBM T22 laptop using a 750 MHz PIIIM CPU, 512 MB of RAM.
The operating system is RedHat Linux 7.1 and Lahey F95 compiler is used (lf95 -O -tp). Similar results

have been obtained on a Compaq ES45 equipped with four 1 GHz EV6.8 Alpha CPUs and 32 GB of main

memory running Compaq OSF1 V5.1 operating system and the Compaq f90 compiler (-O3) but are not

reported in the interest of brevity. Tests using different levels of optimization did not change the numbers

reported here appreciably so they should be regarded as representative of the performance of the test-bed

code.

All of the numerical methods described in this paper are implemented in the same software test-bed

following a similar programming paradigm. The same input and output routines as well as timing routines
are used for both numerical methods. These attributes help to minimize any unintentional performance

biases in this work.
3. Numerical methods

Two numerical methods are considered here. The first is the WENO method described in [13] and the

references contained therein. We use the total variation diminishing (TVD) third-order Runge–Kutta time
integration method [10,20] and the fifth-order spatial discretization. In the literature this method is given

the designator RK3-WENO5. Since this is the only variant of WENO considered here, we simply refer to it

as WENO. The third-order Runge–Kutta method, while linearly stable up to a CFL number of 1.43, is

TVD or SSP (strongly stability preserving) for much smaller numbers. We will use the commonly employed

value of 0.6 for all of our results presented here. The basic building block for the present scheme is based on

a characteristic projection using the arithmetic mean of the primitive variables [1] for the positive and

negative fluxes used in the flux splitting. This is equivalent to using the conservative variables [12]. This is

only slightly different than the approach given in [13], where they consider a Lax–Friedrichs (LF) or a Roe
flux (RF) splitting is considered. We note that the present method should be slightly less diffusive than

WENO using LF or RF. Other than the precise form of the characteristic projection, our method is

identical to the standard WENO implementation.

The second method is a piecewise linear, second-order version of Godunov�s method (PLMDE). This

method is the modern version of the original scheme developed by Colella [4], which follows the original

development of the MUSCL scheme of van Leer [25]. Formally, the method is second order in space and

time following a predictor–corrector formulation. Predicted values are obtained by a characteristic tracing

of the initial data in space-time. That is, cell-centered data, represented by a linear polynomial approxi-
mation over the cell, are traced to cell edges at the half-time level (i.e., t þ Dt=2). This method is stable up to

a CFL number of one but we will take a more conservative limit of 0.9 for all of our results. A monoto-

nicity-preserving central-difference approximation is required for the tracing. This so-called slope (first

derivative of the reconstruction) is given by the formulation in [4], where a fourth-order slope is used before

limiting rather than simply a second-order one (also see [12]). A projection operator [2,5,18,19] completes
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the tracings, filtering out characteristics that do not contribute to the state at cell edges. This gives left and

right states that are input to the Riemann solver. An approximate Riemann solver [6,18] is used, which

solves the Riemann problem for gas dynamics in one space dimension according to the general design given
in [2]. The solution to the Riemann problem gives the predicted values. These are used to construct fluxes,

which are required to update the solution to the next time step (i.e., t þ Dt) in a fully conservative manner.

Several additional techniques that are commonly used such as shock flattening and Lapidus viscosity are

not utilized here. Sensitivity studies show that the results are insensitive to these algorithmic details and

differences in PLMDE solutions are minor.

The algorithm we use to generate highly resolved solutions for the Shu and Osher test problem and the

interacting shock wave problem is the piecewise parabolic MUSCL direct Eulerian (PPMDE) scheme with

the enhanced monotonicity constraints as defined by Suresh and Huynh [24]. It is formally third order in
space and second order in time. We choose to use a third method for generating a highly resolved solution

to avoid potentially biasing of the results in favor WENO or PLMDE. These results are found on meshes

sufficient to produce errors that are at least an order of magnitude lower than PLMDE or WENO results.
4. Error analysis

For the purposes of analyzing the errors quantitatively, we define two error norms used in this study.

The first is the L1 error norm defined as

EL1 ¼
1

N

XN

i¼1

EðiÞ; ð1Þ

with

EðiÞ ¼ jSðiÞ � ScðiÞj
jScðiÞj

;

where SðiÞ is the computed solution available at grid points i and ScðiÞ is the ‘‘true’’ solution to the problem.

If an analytic solution is available, then ScðiÞ is that solution evaluated at the same points as SðiÞ. If an
analytic solution is not available, then we regard a highly resolved calculation as the true solution. ScðiÞ is
conservatively averaged to the same grid that SðiÞ exists on. This operation is only conducted on conserved

quantities consistent with a weak solution.

The other error norm used is the L1 norm defined as

EL1 ¼ max
ð1;...;NÞ

EðiÞ ð2Þ

for SðiÞ and ScðiÞ as above. As a general comment on these error norms, the L1 gives all differences over the
domain the same weight. It tends to give a more global integrated view of the errors in a computed solution.

The L1 norm on the other hand emphasizes errors that occur at peaks or at discontinuities. These are very

complementary norms and together provide a reasonably complete picture of the errors and make precise

what can be visualized by direct comparison of computed solutions.
5. Test problems

5.1. Linear advection

Linear advection of some form is the ubiquitous test for numerical methods. Advection of different

shapes have appeared previously in the literature and we reproduce here results for a particular Gaussian
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pulse. It also serves as means of verifying that the methods as implemented in the test-bed code produce the

expected formal order of accuracy. This is the simplest problem we treat and because of linearity is the best

understood from the point of view of analysis.

5.1.1. Problem specification

Consider the linear advection equation qt þ uqx ¼ 0 in one dimension, with u > 0 a constant. Here, we

take a uniform velocity profile, with u ¼ 1 and take q in the shape of a Gaussian profile given by

q ¼ 1þ expðð�r2Þ=ð2d2ÞÞ; ð3Þ

where r is the distance jx� 0:5j. Here, we set d ¼ 0:0625 and define the profile on the domain 0 < x < 1. The

boundary conditions at x ¼ 0 and x ¼ 1 are periodic. We compute the solution to t ¼ 2 which is two ro-

tations through the domain. We take special note that this problem is solved in the context of the full Euler

equations so that the accuracy of the full solver is tested. Our problem specification is completed by

specifying the pressure, p ¼ 10 and c ¼ 1:4.

5.1.2. Error analysis

In this section we compare the errors between the computed solutions and the analytic solution at the

same resolution. Table 1 shows the error norms and rates of convergence for PLMDE. We see that the

second-order rate is achieved for the L1 norm and first order in the L1 norm. The first-order L1 norm shows

the effect of the slope limiter in PLMDE that reduces the slope approximation used in the characteristic

tracing to first order when monotonicity is threatened by local extrema. In Table 2, the L1 and L1 relative

errors are shown for the WENO method. The expected convergence rate, fifth order, is essentially achieved
for CFL ¼ 0:6. We note that only 75–80% of that rate is achieved for the higher CFL ¼ 1, as shown in

Table 3, providing a justification for taking care not to choose the higher CFL number.

Recall that the L1 norm emphasizes errors where they are the largest, while L1 represents an integrated

measure; all errors are given equal weight and summed over the entire domain. If we plot the difference,

EðiÞ ¼ jSðiÞ � ScðiÞj=ScðiÞ, used to construct the norms as a function of grid point, then we can visualize

where the errors are largest as well as their spatial structure. In Fig. 1, we see that for PLMDE the largest

errors are near the peak (x ¼ 0:5) of the Gaussian and fall off in a way consistent with the WENO errors. At

the peak, the errors for both methods are the largest, but those for WENO are nearly two decades smaller
in magnitude at the same resolution. For finer meshes the differences become even more extreme owing to

the fact that WENO is converging at its designed fifth-order accuracy.
Table 1

L1 and L1 errors and convergence rates for PLMDE for the advection of a Gaussian pulse at different grid resolutions

N EL1 L1 rate EL1 L1 rate

100 1.97e) 03 – 1.17e) 02 –

200 5.64e) 04 1.80 5.19e) 03 1.17

400 1.50e) 04 1.91 2.33e) 03 1.16

Table 2

L1 and L1 errors and convergence rates for the WENO method for the advection of a Gaussian pulse at different grid resolutions using

CFL ¼ 0:6

N EL1 L1 rate EL1 L1 rate

100 3.29e) 05 – 1.27e) 04 –

200 1.09e) 06 4.92 5.31e) 06 4.58

400 3.69e) 08 4.88 2.11e) 07 4.65



Table 3

L1 and L1 errors and convergence rates for the WENO method for the advection of a Gaussian pulse at different grid resolutions using

CFL ¼ 1:0

N EL1 L1 rate EL1 L1 rate

200 5.662e) 06 – 3.247e) 05 –

400 2.343e) 07 4.6 1.583e) 06 4.36

800 1.744e) 08 3.75 1.062e) 07 3.9
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Fig. 1. The quantity EðiÞ is plotted for PLMDE and the WENO method on a vertical log scale at resolutions indicated in the figure

legend.
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5.1.3. Base timings

In Table 4, we show the run time results for the two methods for two periods through the grid. Ac-

cording to the above results, WENO�s convergence rate is sensitive to CFL. Furthermore, results in the

literature uniformly use a CFL value less than 0.6, even though the third-order Runge–Kutta time inte-

gration method is stable to a CFL value of 1.43. In the interests of balancing high accuracy (low errors) and

consistency with the existing body of work, we will use the CFL ¼ 0:6. Note that the timings can be scaled

to a different CFL using the number of total time steps taken but taking care to note that the relative
accuracy of the resultant solution will possibly be degraded.

5.2. Sod and peak shock tubes

An equally ubiquitous test for these numerical methods are shock tubes. We will examine two different

shock tube problems here, Sod�s [23] and the ‘‘peak’’ problem used by Liska and Wendroff [14]. Sod�s shock
tube is a relatively easy problem, but the peak is quite difficult because of the large density and small
Table 4

Timings for PLMDE and WENO methods for linear advection of a Gaussian pulse

N PLMDE (s) Time steps WENO (s) Time steps Ratio

100 2.11 1083 11.13 1610 5.22

200 7.03 2137 43.40 3191 6.17

400 24.69 4245 164.76 6352 6.67

The ‘‘Ratio’’ column shows the WENO result divided by the PLMDE result.
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distance between the shock and the contact. Both of these problems have analytic solutions, as do all

shocktube problems for polytropic gases, providing unambiguous error analysis.

5.2.1. Problem specifications

Both problems are specified using a shock tube initial condition: a discontinuous initial state that forms a

self-similar profile in the x=t coordinate. For both problems we will provide the left and right initial states in

the form of a vector, ðq; u; pÞT. In both cases the pressure is related to the density and energy through an

ideal gas equation of state with c ¼ 1:4. In the case of Sod�s shock tube, the left state (x < 0:5) is ð1; 0; 1ÞT
and the right state (x > 0:5) is ð0:125; 0; 0:1ÞT. The domain is x 2 ½0; 1� and results are reported at t ¼ 0:2.
We will report results for grids of 100, 200 and 400 cells. The peak problem is defined in the same manner

with the left state (x < 0:5 being ð0:1261192; 8:9047029; 782:92899ÞT and the right state (x > 0:5) is
ð6:591492; 2:2654207; 3:1544874ÞT on the unit interval. The problem is run to t ¼ 0:0039. We will report

results for grids of 200, 400 and 800 cells. In all cases we ramp up the time step size from one-tenth the CFL

limit, specified previously for each method, at a rate of 1.05 per time step until the full specified CFL limit is

reached.

5.2.2. Error analysis

In this section we compare the errors between the computed solutions and the analytic solution at the

same resolution. For Sod�s shock tube, the L1 norm errors for PLMDE are roughly half the size of those for
WENO as seen by comparing the errors in Tables 5 and 6. The L1 norms are comparable in size with the

PLMDE errors being slightly smaller. This norm also grows in magnitude in response to the localization of

error at the shock.

A plot of the error as a function of x is shown in Fig. 2. The spatial distribution of the errors for the two

methods are very similar; however, in the rarefaction region, 0:256 x6 0:45, PLMDE has uniformly lower

errors. At the shock, x � 0:87, the WENO errors extend past the shock location while the PLMDE errors

drop off sharply. This effect could be the result of the (relative) phase error in the WENO method.

The peak shock tube places a high premium on computing a narrow density peak. The errors for these
methods on this problem is quite similar, as is evident from the data shown in Tables 7 and 8. The con-

vergence rates are poor and irregular, but similar. At the finest resolution used the solutions in the vicinity

of the peak density are nearly identical as shown in Fig. 3. The differences favor PLMDE with its solution

being slightly sharper although slightly lower in maximum density at the finest (800 cell) resolution. The
Table 5

EL1 and EL1 errors and convergence rates for PLMDE on Sod�s shock tube at different grid resolutions

N EL1 L1 rate EL1 L1 rate

100 8.22e) 03 – 0.22e) 00 –

200 4.48e) 03 0.88 0.25e) 00 )0.20
400 2.62e) 03 0.77 0.33e) 00 )0.37

Table 6

EL1 and EL1 errors and convergence rates for the WENO method for Sod�s shock tube at different grid resolutions

N EL1 L1 rate EL1 L1 rate

100 1.58e) 02 – 0.37e) 00 –

200 8.24e) 03 0.93 0.40e) 00 )0.01
400 4.47e) 03 0.88 0.46e) 00 )0.18
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Fig. 2. The quantity EðiÞ for density on Sod�s shock tube plotted for PLMDE (solid line) and the WENO method (dashed line) on a

vertical log scale for N ¼ 100.

Table 7

L1 and L1 errors and convergence rates for PLMDE for the peak shock tube at different grid resolutions

N EL1 L1 rate EL1 L1 rate

100 1.02 – 139.0 –

200 0.86 0.24 187.0 )0.43
400 0.29 1.57 120.0 0.65

Table 8

L1 and L1 errors and convergence rates for the WENO method for the peak shock tube at different grid resolutions

N EL1 L1 rate EL1 L1 rate

100 0.93 – 125.0 –

200 0.86 0.12 185.0 )0.57
400 0.29 1.55 129.0 0.52

0.54 0.55 0.56 0.57
0
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x

de
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Fig. 3. The density around the peak in the peak shock tube problem is plotted for PLMDE (dashed line) and the WENO method (dot-

dashed line) with the exact solution (solid line) for N ¼ 800.
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point of this problem is to demonstrate the similarity of performance of the two schemes on this difficult

problem.

5.2.3. Base timings

In Tables 9 and 10, we show the run time results for the two methods. The CFL limits are as before. The

relative cost of the two methods for this simple nonlinear problem is the essentially the same as that for the

linear advection problem. That is, the relative cost of WENO to PLMDE is approximately 6.

5.3. Shu and Osher test problem

This test problem is probably the simplest one-dimensional compressible flow problem that contains
interesting structures. It is also considered to be a good one-dimensional surrogate for the interaction of a

shock wave with a turbulent field.

5.3.1. Problem definition

The problem is a Mach 3 shock wave in a c ¼ 1:4 perfect gas interacting with upstream sinusoidal

density waves. Specifically at t ¼ 0,

x < �4 : q ¼ 3:857143; qu ¼ 2:629369; p ¼ 10:33333; ð4Þ
xP � 4 : q ¼ 1� � sinðkxÞ; qu ¼ 0; p ¼ 1 ð5Þ

defined on �5 < x < 5. In the present study, we take � ¼ 0:2 and k ¼ 5p. For a different set of values see

[13]. We choose this set because they give very high frequency oscillations in the near post-shock region that

transitions downstream to a longer wavelength ‘‘N-wave’’ pattern. We wish to stress the algorithms in their

abilities to accurately resolve high frequency modes after shock processing. The boundary conditions are set

as inflow/outflow at x ¼ �5 and x ¼ 5. The final time for analysis is taken to be t ¼ 1:8, at which time, there

is no flow across the x ¼ 5 boundary.

For the ‘‘exact’’ solution, we use an extensively refined grid solution using a different method. We choose

PPMDE embellished with relaxed monotonicity requirements as defined by Suresh and Huynh [24] to
produce this solution using 25,600 cells. This method combines elements of both the PLMDE and WENO5
Table 10

Timings for PLMDE and WENO methods for the peak shock tube

N PLMDE (s) Time steps WENO (s) Time steps Ratio

200 2.37 168 0.43 121 5.51

400 8.57 305 1.40 212 6.12

800 35.78 579 5.00 395 7.15

Table 9

Timings for PLMDE and WENO methods for Sod�s shock tube

N PLMDE (s) Time steps WENO (s) Time steps Ratio

100 0.17 72 0.69 95 4.06

200 0.43 127 2.34 173 5.44

400 1.40 238 8.98 329 6.41

The ‘‘Ratio’’ column shows the WENO result divided by the PLMDE result.



Table 11

L1 and L1 errors for the highly converged PPMDE solution of the Shu–Osher test problem

N EL1 L1 rate EL1 L1 rate

6400:12800 3.00e) 04 – 9.65e) 02 –

12800:25600 1.24e) 04 1.27 2.84e) 02 1.76
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methods without being directly derived from either. This is to avoid making comparisons that are overly

biased for or against either method. Furthermore, we will now provide evidence that the errors in the highly

converged solution are sufficiently well resolved to be considered as a standard. In Table 11, we display the

L1 and L1 errors for this solution as well as the self-convergence rates. The L1 errors are a factor of ap-

proximately 10 times lower than those estimated for PLMDE and WENO5 below. In the case of the L1
errors this factor is also approximately 10.

At this point it is worthwhile to discuss two manners of estimating error and determining convergence
rates. One method uses ‘‘self-convergence’’ where a method�s next most refined grid is used to estimate

errors rather than an exact or surrogate of an exact solution. Our principle tool in this paper is an exact

solution as determined by an extremely refined grid. In this section we will also report self-convergence,

which, in a sense, marks a method�s internal progress toward a solution rather than the absolute measure of

such progress.

5.3.2. Error analysis

Examining the errors quantitatively shows the quality of the computed solution for a given resolution. In
Table 12 is shown the L1 errors for PLMDE and WENO for the grid resolutions considered. We use the

solution at N ¼ 25; 600 generated using PPMDE as the true solution for the error analysis on this test

problem. We see in Table 12 that the errors between the two methods are comparable at similar resolution

for the coarser resolutions, N < 1600. Also for these cases, the convergence rate is essentially zeroth order.

The poor convergence rates are a bit puzzling at first glance in light of the convergence rates published in

[26] for the next test problem. They show first-order convergence for nominally second-order codes and less

than first-order convergence for the first-order version of Godunov�s method. An explanation for this could

be the nature of this test problem. There is a minimum resolution required to represent the high frequency
modes present in the post-shock region. Less than expected convergence rates would indicate that the low

resolution computed solutions are very different (uncorrelated) from the highly resolved solution.

For N P 1600, the magnitude of the errors differs by less than a factor of 2 in favor of WENO with both

schemes showing better than first-order convergence. We are now in the regime where the computed so-

lutions are correlated with the highly resolved solution.

The L1 self-convergence errors are summarized in Table 13. Below the critical resolution of N ¼ 1600, we

see nominally first-order convergence between the two methods. As the resolution matches the critical

resolution in the N ¼ 800 : 1600 case, we observe divergence. For the N ¼ 1600 : 3200 case, the solutions
Table 12

L1 errors for PLMDE and WENO relative to the N ¼ 25; 600 PPMDE solution for the Shu and Osher test problem

N EL1 PLMDE PLMDE L1 rate EL1 WENO WENO L1 rate

200 1.858e) 02 – 2.104e) 02 –

400 1.837e) 02 0.16 1.959e) 02 0.10

800 1.669e) 02 0.14 1.626e) 02 0.27

1600 7.018e) 03 1.25 4.001e) 03 2.02

3200 2.423e) 03 1.53 1.358e) 03 1.60



Table 13

L1 errors for PLMDE and WENO using self-convergence for the Shu and Osher test problem

N EL1 PLMDE PLMDE L1 rate EL1 WENO WENO L1 rate

200:400 7.198e) 03 – 6.137e) 03 –

400:800 3.348e) 03 1.10 4.401e) 03 0.48

800:1600 1.077e) 02 )0.14 1.275e) 02 )1.53
1600:3200 6.125e) 03 0.81 2.826e) 03 2.17

Table 14

L1 errors for PLMDE and WENO relative to the N ¼ 25; 600 PPMDE solution for the Shu and Osher test problem

N EL1 PLMDE EL1 WENO

200 0.429 0.902

400 0.188 0.667

800 0.290 0.369

1600 0.185 0.572

3200 0.230 0.399

Table 15

L1 errors for PLMDE and WENO using self-convergence for the Shu and Osher test problem

N EL1 PLMDE EL1 WENO

200:400 0.143 0.274

400:800 0.081 0.216

800:1600 0.238 0.216

1600:3200 0.077 0.100
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appear to converge again at nominally first order or better. The convergence rates when considering self-

convergence indicate the rate at which a computed solution is approaching a solution on a grid twice as

fine. It makes no statement regarding the accuracy of the computed solution relative to the true solution.

The L1 errors are shown in Tables 14 and 15. For both methods, the errors are essentially oscillatory

throughout the resolutions considered and of similar magnitudes for both methods. When examining the

L1 errors under self-convergence, we observe a similar behavior with respect to PLMDE. For WENO, the

errors are roughly constant for N 6 1600. At higher resolutions, the errors then decrease.

5.3.3. Base timings

Table 16 summarizes the run times in seconds to compute the solution to t ¼ 1:8 for the two methods on

successively finer grids. Our standard CFL is used for both methods. The ratio column gives the ratio of

WENO runtime to that of PLMDE. We see that at a given resolution PLMDE is faster by approximately a

factor of 6.

5.3.4. Density field visualizations

In this section we examine plots of the computed density fields for WENO and PLMDE. We will divide

the flow into four distinct regions for presentation of results: near the shock x 2 ½2; 2:5�; the near field (NF),

entropy wave (EW) x 2 ½1; 2�; the transition to the N-waves x 2 ½0; 1�; and the far field (FF), N-wave region

x 2 ½�2; 0�. We display the extremely fine grid solution (taken as being nearly ‘‘exact’’) in Fig. 4. We then

show a series of plots displaying the grid convergence behavior of both schemes and a comparison of errors

on the medium size grid (1600 cells). Figs. 5–16 show these comparisons. In the near shock region we see



Table 16

Run times for PLMDE and WENO for the Shu and Osher test problem

N PLMDE time (s) Time steps WENO time (s) Time steps Ratio

200 0.84 250 4.84 334 5.76

400 2.89 468 17.38 634 6.01

800 11.02 903 73.07 1235 6.63

1600 46.09 1774 280.62 2443 6.09

3200 226.74 3514 1278.31 4857 5.63
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Fig. 4. The ‘‘exact’’ solution to the Shu–Osher problem from PPMDE using 25,600 cells. The domain is divided into four distinct

regions for presentation of the results: near the shock or NF x 2 ½2; 2:5�, the EW x 2 ½1; 2�, the TN x 2 ½0; 1� and the FF, N-wave region

x 2 ½�2; 0�.
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that the WENO method commits greater errors at the shock, but the errors are smaller once the fluid is
processed by the shock. This trend continues in the NF region where the advantage of WENO is the

greatest. As the flow transitions to a series of N-waves, the errors become nearly equal in magnitude. Fi-

nally, the errors in WENO become larger than those committed by PLMDE in the FF region in keeping
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Fig. 5. A comparison of the errors in the NF region for the Shu and Osher test problem. PLMDE is shown as a solid line and WENO

is shown with a dashed line.
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Fig. 6. A comparison of the errors in the EW region for the Shu and Osher test problem. PLMDE errors are shown as a solid line and

WENO errors are shown with a dashed line.
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Fig. 7. A comparison of the errors in the TN region for the Shu and Osher test problem. PLMDE errors are shown as a solid line and

WENO errors are shown with a dashed line.
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Fig. 8. A comparison of the errors in the FF region for the Shu and Osher test problem. PLMDE errors are shown as a solid line and

WENO errors are shown with a dashed line.
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Fig. 9. The 800, 1600 and 3200 zone PLMDE solutions are shown in the near shock (NS) region for the Shu and Osher test problem.
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Fig. 10. The 800, 1600 and 3200 zone WENO solutions are shown in the near shock (NS) region for the Shu and Osher test problem.
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Fig. 11. The 800, 1600 and 3200 zone PLMDE solutions are shown in the EW region for the Shu and Osher test problem.
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Fig. 12. The 800, 1600 and 3200 zone WENO solutions are shown in the EW region for the Shu and Osher test problem.
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Fig. 13. The 800, 1600 and 3200 zone PLMDE solutions are shown in the transition region (TN) for the Shu and Osher test problem.
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Fig. 14. The 800, 1600 and 3200 zone WENO solutions are shown in the transition region (TN) for the Shu and Osher test problem.
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Fig. 15. The 800, 1600 and 3200 zone PLMDE solution in the FF region for the Shu and Osher test problem.
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Fig. 16. The 800, 1600 and 3200 zone WENO solution in the FF region for the Shu and Osher test problem.
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with our general observation from this data that WENO produces larger errors near a shock wave as

compared to PLMDE.

The errors are shown in Fig. 5 for the NF region. We see that WENO has larger errors in the neigh-

borhood of the shock wave. Behind the shock in the beginning of the entropy wave oscillations, we see that

WENO and PLMDE have similar errors with a slight advantage to WENO. The corresponding density

plots for N ¼ 800, 1600 and 3200 with the exact solution for reference for PLMDE and WENO are shown

in Figs. 9 and 10, respectively.

In the EW region of the flow, the errors plotted in Fig. 6 are uniformly lower for WENO compared to
PLMDE. Typical differences are roughly a factor of 2 in this region and these errors dominate the overall

error for the problem. If we compare the distribution of errors with the density plot for PLMDE, Fig. 11,

and for WENO, 12, we see that the minimum errors typically occur at local minima in the density while the

maximum errors typically occur at local maxima. We also see the dramatic effect that occurs for both

methods when the resolution is increased above N ¼ 800; the wavelength of the high frequency oscillations

are beginning to be resolved.
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At the end of the EW region, the flow undergoes a transition to N-Waves (TN). The errors in this region

for PLMDE and WENO are plotted in Fig. 7. Similar errors are observed throughout this region for both

methods. Figs. 13 and 14 show the density field for PLMDE and WENO, respectively, for N ¼ 800, 1600
and 3200 resolutions. The density fields produced by both methods are also similar in this region which is

consistent with the similarity of the error plots.

Finally in the FF region, the errors for PLMDE and WENO are shown in Fig. 8. At the discontinuities

of the N-waves, both methods produce similar errors. In the regions in between, PLMDE has an advantage

in error magnitude. The errors can be compared with the density fields which are shown in Figs. 15 and 16

for PLMDE and WENO, respectively. A slight advantage is observed near the peaks for PLMDE that is

consistent with the error plot in this region.

5.3.5. Break-even analysis

It is an essential exercise to take the time used by WENO as a fixed resource that we want to fully utilize

for a PLMDE calculation. Table 17 shows the PLMDE resolution necessary to approximately equate run

times. Overall, we can use a grid more than twice as fine for PLMDE and have the run times equal. This

uniformly lowers the errors for each equal-WENO-time PLMDE calculation by approximately a factor of

2.5, assuming first-order convergence. Looking back to Tables 12 and 14 for the L1 and L1 errors, re-

spectively, we see that a doubling of the number of grid points produces a PLMDE solution with lower

errors by at least a factor of 2 for the norms considered here. For this test problem and a fixed amount of
computational time, PLMDE can produce a quantitatively more accurate solution independent of the

chosen error norm.

5.4. Woodward–Colella interacting shock wave problem

The interacting shock wave problem was first featured as part of test suite in [26]. It is a very challenging

problem for Eulerian methods as the compressions are exceptionally high in very small volumes. This

repeats some of the features of the ‘‘peak’’ shock tube. Also, it features strong nonlinear effects through the
interaction of shock, rarefactions and contact discontinuities.

5.4.1. Problem description

The one-dimensional interacting shock wave problem is two separate shock tube problems featuring a

region of low pressure in between. The fluid is a c ¼ 1:4 perfect gas. At t ¼ 0, we have the following

configuration:

0 < x < 0:1 : q ¼ 1; qu ¼ 0; p ¼ 1000; ð6Þ
0:1 < x < 0:9 : q ¼ 1; qu ¼ 0; p ¼ 0:01; ð7Þ
0:9 < x < 1 : q ¼ 1; qu ¼ 0; p ¼ 100: ð8Þ
Table 17

Comparison of WENO to PLMDE resolution for equal run times for the Shu and Osher test problem

WENO N PLMDE N PLMDE time (s) Ratio

200 500 4.72 0.98

400 1020 17.68 1.02

800 2020 74.14 1.01

1600 3940 289.10 1.03
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The boundary conditions at x ¼ 0 and 1 are set to solid reflecting walls. For a more detailed description

of this problem and its evolution see [26]. Instead of following the evolution over time, we focus on the final

time solution at t ¼ 0:38.

5.4.2. Error analysis

For a solution as complex as this one, quantitative error measures are a necessity. The solution com-

puted with PPMDE and N ¼ 6400 is used as the true solution for this problem. As with the previous shock-

entropy problem, our first task is to provide the evidence necessary to provide confidence in this solution as

an appropriate standard for comparison. In Table 18 we display the L1 and L1 errors for this solution as

well as the self-convergence rates. The L1 errors are a factor of nearly 40 times lower than those estimated

for PLMDE and WENO5 below. In the case of the L1 errors, this factor is nearly 30.
In Table 19, the L1 errors are reported as well as the convergence rates. The overall magnitude of the

errors for both methods are within 10–15% and the convergence rates are nearly first order. PLMDE is

more accurate at all grid resolutions tested here. If instead we look at the L1 norm errors shown in Table

20, we see that the overall error levels are high for both methods due to the presence of multiple flow

discontinuities. The spatial distribution of error is displayed in Fig. 17. The largest contribution to the error

occurs at the contact discontinuity located near x � 0:60, that is embedded in a strongly rarefying flow.

5.4.3. Break-even analysis

Reference to Table 21, it is clear that for the cost of the WENO solution, PLMDE can use a grid that is

approximately 2.5 times as fine. That is, the N ¼ 800 PLMDE solution takes 16.91 s to compute the so-

lution at t ¼ 0:038, while WENO using N ¼ 300 method takes 17.01 s to integrate to the final time. With

the L1 errors converging at a first-order rate, this implies that 2.5 times the number of grid points for

PLMDE will produce L1 errors lower by a factor of 2 smaller than the WENO method. For just a factor of

2 increase in grid points, we see that this is true (cf. Table 19).
Table 18

L1 and L1 errors for the highly converged PPMDE solution to the interacting shock wave problem

N EL1 L1 rate EL1 L1 rate

1600:3200 1.93e) 03 – 1.92e) 01 –

3200:6400 1.06e) 03 0.86 1.29e) 01 0.56

Table 19

L1 error for PLMDE and WENO relative to the N ¼ 6400 PPMDE solution for the interacting shock wave problem

N EL1 PLMDE PLMDE rate EL1 WENO WENO rate

200 1.133e) 01 – 1.256e) 01 –

400 6.298e) 02 0.85 7.071e) 02 0.83

800 3.777e) 02 0.74 4.240e) 02 0.74

Table 20

L1 error for PLMDE and WENO for the interacting shock wave problem

N EL1 PLMDE EL1 WENO

200 3.126 3.298

400 3.258 3.605

800 3.274 3.740



0.5 0.6 0.7 0.8 0.9
0.001

0.01

0.1

1

10

x

E
(i

)

PLMDE

WENO5

Fig. 17. A comparison of the spatial distribution of error for the interacting shock wave problem.

Table 21

Timings for PLMDE and WENO on the interacting shock wave problem

N PLMDE Time steps WENO Time steps Ratio

200 1.20 369 7.19 540 5.99

400 4.29 723 27.80 1072 6.48

800 16.91 1435 120.49 2141 7.13
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5.4.4. Density plot comparison

In this section, we depict graphically the facts established for this test problem. We compare the density

field computed by the WENO method at a particular resolution against the same resolution PLMDE

solution and a PLMDE solution at twice the number of grid points. Fig. 18 shows the comparison between

with the WENO result at N ¼ 200 and a N ¼ 200 and 400 Godunov solution. Comparing the results at the

peaks (x � 0:78 and x � 0:65) between the N ¼ 200 solutions shows that WENO is better at reproducing
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Fig. 18. The density at t ¼ 0:038 for the interacting shock wave test problem. The WENO result with N ¼ 200 (dashed line) is shown

with PLMDE results at N ¼ 200 (dash-dot line) and at N ¼ 400 (solid line).
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Fig. 19. The density at t ¼ 0:038 for the Interacting Shock Wave test problem. The WENO result with N ¼ 800 (dashed line) is shown

with the PLMDE results at N ¼ 800 (dash-dot line) and at N ¼ 1600 (solid line).
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the peaks. The overall similarity between the L1 and L1, though, show that away from the peaks PLMDE

must be generating smaller errors than WENO so that upon integration of the pointwise errors over the

entire domain yields results that are similar. Even at this coarse resolution, we see that PLMDE with both
N ¼ 200 and 400 produces a less diffuse left-most contact region (0:55 < x < 0:65) compared to WENO.

In Fig. 19, the N ¼ 800 WENO result is compared with the N ¼ 800 and 1600 PLMDE result. Again

when we compare the N ¼ 800 solutions, WENO is better at the peaks, but this difference is much smaller

than at coarser zoning. Still, the similarity of error norms at N ¼ 800 show that on average (after inte-

gration) PLMDE is producing an overall more accurate solution for this problem.

5.4.5. Base timings

Timings in seconds for running the problem to t ¼ 0:038 on different grids are given in Table 21. We use
the same CFL numbers as before. The following table contains the grid resolution used for both methods

and the CPU time in seconds for PLMDE and for WENO in order to run the problem to t ¼ 0:038. We also

list the ratio of the WENO time to PLMDE. Values greater than unity indicate that PLMDE is faster.

These results are consistent with our earlier experience with these methods.

We note that it was found that a CFL ¼ 1 produced reasonable results for this test problem with

WENO. In [13] the present problem was run at a CFL ¼ 0:6, so our timing results are set to be consistent

with that practice.
6. Conclusions

This study has several important results:

• The most important of these is given the baseline performance of the WENO method on linear problems

where its fifth-order convergence rate is manifest, for the nonlinear problems considered here, the accu-

racy advantage of the fifth-order method has essentially vanished and the convergence rate has been re-

duced to first order.
• At a fixed resolution the overall level of errors (accuracy per unit grid cell), for the norms used here, are

typically similar for the problems considered. The one notable exception is the Shu–Osher problem in the

EW regime, for which the WENO method produces L1 errors lower by nearly a factor of 2.
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• Also, we have shown nominally first-order convergence for the methods to a highly resolved third inde-

pendent method.

• Our next important result concerns the difference in run times for the two methods. At a typical CFL

used for each method, PLMDE is six times faster than WENO5 for a given mesh and simulation end
time. For the nonlinear problems considered, when the computational expense between PLMDE and

WENO5 is equated, PLMDE produces solutions with uniformly lower errors with respect to the norms

considered (accuracy per unit CPU second).

This work has made clear progress in providing quantitative measures and comparisons between a

formally high-order accurate method and a formally second-order one. It has demonstrated the importance

of making detailed measurements of actual errors rather than simply relying upon qualitative comparisons

between schemes. This allows both the relative strengths and weaknesses of these methods to be quantified

unambiguously, so that sound conclusions can be drawn as to the efficacy of these methods on various
classes of problems.

In light of these conclusions, an obvious question is raised: what has happened to the higher-order

method�s advantage observed in the linear regime when nonlinearity is introduced? While high-order

convergence is not to be expected when intrinsic dissipation techniques are activated (e.g., when under-

resolved gradients are present) as theoretical work predicts, it is generally hoped that the higher-order

method may offer lower overall errors. This was generally found to not be the case as the errors differed

typically by only a factor of 2. The nonlinear problems considered here or other relevant ones should serve

as tests to try to understand this issue more fully.
Two areas are ripe for further attention: (1) determining why the high order methods have lost the

advantage so clear in the linear regime when nonlinearity comes into play, or equivalently, what parts of

PLMDE make it particularly good for nonlinear problems and (2) how does this picture change when

multi-dimensional problems are considered? Some work in this area [8] indicates that the multi-dimensional

results will be similar to those reported here; that is formally high order methods are comparable to the

second-order Godunov method for nonlinear problems in multiple spatial dimensions. Both of these areas

are important and have potentially far reaching implications for the compressible flow simulation com-

munity.
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